|
Welcome to Polshettiwar's NanoCat GroupPolshettiwar's Nano-catalysis Laboratory is part of Tata Institute of Fundamental Research (TIFR), Mumbai and integrated into the Division of Chemical Sciences (DCS).
Energy and environment are two of our critical societal challenges. Climate change due to excessive CO2 levels is the most serious problem mankind has ever faced. This is causing abrupt weather patterns such a flood and drought, and we already witnessed this in recent years. CO2 emissions need to be urgently reduced to avoid potentially dangerous climate change, which may not be reversible. Capture and conversion of CO2 to fuel and fine chemicals is one of the best ways to tackle the challenges of environment and energy together. One of the stimulating features of nanotechnology is its potential use in almost any field. The discovery of nanoparticles with varied size, shape and composition has stretched the limits of technology in ways that scientists would never have dreamt of a century ago. Nature makes and chemistry re-shapes; huge varieties of nanoparticles have emerged in our daily life, in every field from drugs and electronics to paints and beauty care, and they are now emerging in the field of catalysis. Nano-Catalysis is becoming a strategic field of science since it represents a new way to meet the challenges of energy and sustainability. These challenges are becoming the main concerns of the global vision of the societal challenges and world economy. Catalysis research became one of the most powerful tools to take on these challenges. Nanocatalysis can help design catalysts with excellent activity, greater selectivity, and high stability. Their properties can easily be tuned by tailoring the size, shape, and morphology of the particular nanomaterial. In the nano-catalysis (NanoCat) laboratory, we are designing and synthesizing various nano-materials (silica, metal oxides, metals, MOF etc) with specific shapes, sizes and morphologies and then evaluating their use as a nano-catalysts for the development of sustainable protocols for various challenging processes like photocatalysis, CO2 capture and conversion to fine chemicals, environmental remediation as well as C-H activation, C-C coupling, oxidation, metathesis, hydrogenolysis, hydrogenation reactions. A guiding hypothesis is that catalytic efficiency (activity, kinetics, selectivity and stability) can be controlled by tuning the morphology of nanomaterials/nanocatalysts. We aim to develop of novel nanomaterials as catalysts to tackle “climate change”. Google Scholar- http://scholar.google.co.in/citations?user=mNJfGlQAAAAJ&hl=en ORCID - http://orcid.org/0000-0003-1375-9668 |